Loading...
Access 97 premium AI models from leading providers. Experience the power of GPT-4, Gemini, Llama, and more with Pluely's privacy-first AI assistant.
OpenAI: GPT OSS 120B
Lightning-fast text-to-text responses with GPT OSS 120B. Pluely's fastest model, first request may takes a slight delay due to model initialization.
Google: Gemma2 9B IT
Lightning-fast text-to-text responses with GEMMA2 9B IT. Pluely's fastest model, first request may takes a slight delay due to model initialization.
Qwen: Qwen3 32B
Lightning-fast text-to-text responses with QWEN3 32B. Pluely's fastest model, first request may takes a slight delay due to model initialization.
xAI: Grok 4 Fast
Grok 4 Fast is xAI's latest multimodal model with SOTA cost-efficiency and a 2M token context window. It comes in two flavors: non-reasoning and reasoning. Read more about the model on xAI's news post.
Reasoning can be enabled/disabled using the reasoning enabled parameter in the API. Learn more in our docs
xAI: Grok Code Fast 1
Grok Code Fast 1 is a speedy and economical reasoning model that excels at agentic coding. With reasoning traces visible in the response, developers can steer Grok Code for high-quality work flows.
Qwen: Qwen3 Coder 30B A3B Instruct
Qwen3-Coder-30B-A3B-Instruct is a 30.5B parameter Mixture-of-Experts (MoE) model with 128 experts (8 active per forward pass), designed for advanced code generation, repository-scale understanding, and agentic tool use. Built on the Qwen3 architecture, it supports a native context length of 256K tokens (extendable to 1M with Yarn) and performs strongly in tasks involving function calls, browser use, and structured code completion.
This model is optimized for instruction-following without “thinking mode”, and integrates well with OpenAI-compatible tool-use formats.
Meta: Llama Guard 4 12B
Llama Guard 4 is a Llama 4 Scout-derived multimodal pretrained model, fine-tuned for content safety classification. Similar to previous versions, it can be used to classify content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM—generating text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.
Llama Guard 4 was aligned to safeguard against the standardized MLCommons hazards taxonomy and designed to support multimodal Llama 4 capabilities. Specifically, it combines features from previous Llama Guard models, providing content moderation for English and multiple supported languages, along with enhanced capabilities to handle mixed text-and-image prompts, including multiple images. Additionally, Llama Guard 4 is integrated into the Llama Moderations API, extending robust safety classification to text and images.
Meta: Llama 4 Maverick
Llama 4 Maverick 17B Instruct (128E) is a high-capacity multimodal language model from Meta, built on a mixture-of-experts (MoE) architecture with 128 experts and 17 billion active parameters per forward pass (400B total). It supports multilingual text and image input, and produces multilingual text and code output across 12 supported languages. Optimized for vision-language tasks, Maverick is instruction-tuned for assistant-like behavior, image reasoning, and general-purpose multimodal interaction.
Maverick features early fusion for native multimodality and a 1 million token context window. It was trained on a curated mixture of public, licensed, and Meta-platform data, covering ~22 trillion tokens, with a knowledge cutoff in August 2024. Released on April 5, 2025 under the Llama 4 Community License, Maverick is suited for research and commercial applications requiring advanced multimodal understanding and high model throughput.
Perplexity: Sonar
Sonar is lightweight, affordable, fast, and simple to use — now featuring citations and the ability to customize sources. It is designed for companies seeking to integrate lightweight question-and-answer features optimized for speed.
Anthropic: Claude 3 Haiku
Claude 3 Haiku is Anthropic's fastest and most compact model for near-instant responsiveness. Quick and accurate targeted performance.
See the launch announcement and benchmark results here
#multimodal
OpenAI: GPT-5.1-Codex-Max
GPT-5.1-Codex-Max is OpenAI’s latest agentic coding model, designed for long-running, high-context software development tasks. It is based on an updated version of the 5.1 reasoning stack and trained on agentic workflows spanning software engineering, mathematics, and research. GPT-5.1-Codex-Max delivers faster performance, improved reasoning, and higher token efficiency across the development lifecycle.
OpenAI: GPT-5.1-Codex
GPT-5.1-Codex is a specialized version of GPT-5.1 optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5.1, Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the reasoning.effort parameter. Read the docs here
Codex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.
Free Models Router
The simplest way to get free inference. openrouter/free is a router that selects free models at random from the models available on OpenRouter. The router smartly filters for models that support features needed for your request such as image understanding, tool calling, structured outputs and more.
StepFun: Step 3.5 Flash
Step 3.5 Flash is StepFun's most capable open-source foundation model. Built on a sparse Mixture of Experts (MoE) architecture, it selectively activates only 11B of its 196B parameters per token. It is a reasoning model that is incredibly speed efficient even at long contexts.
Arcee AI: Trinity Large Preview
Trinity-Large-Preview is a frontier-scale open-weight language model from Arcee, built as a 400B-parameter sparse Mixture-of-Experts with 13B active parameters per token using 4-of-256 expert routing.
It excels in creative writing, storytelling, role-play, chat scenarios, and real-time voice assistance, better than your average reasoning model usually can. But we’re also introducing some of our newer agentic performance. It was trained to navigate well in agent harnesses like OpenCode, Cline, and Kilo Code, and to handle complex toolchains and long, constraint-filled prompts.
The architecture natively supports very long context windows up to 512k tokens, with the Preview API currently served at 128k context using 8-bit quantization for practical deployment. Trinity-Large-Preview reflects Arcee’s efficiency-first design philosophy, offering a production-oriented frontier model with open weights and permissive licensing suitable for real-world applications and experimentation.
Upstage: Solar Pro 3
Solar Pro 3 is Upstage's powerful Mixture-of-Experts (MoE) language model. With 102B total parameters and 12B active parameters per forward pass, it delivers exceptional performance while maintaining computational efficiency. Optimized for Korean with English and Japanese support.
LiquidAI: LFM2.5-1.2B-Thinking
LFM2.5-1.2B-Thinking is a lightweight reasoning-focused model optimized for agentic tasks, data extraction, and RAG—while still running comfortably on edge devices. It supports long context (up to 32K tokens) and is designed to provide higher-quality “thinking” responses in a small 1.2B model.
LiquidAI: LFM2.5-1.2B-Instruct
LFM2.5-1.2B-Instruct is a compact, high-performance instruction-tuned model built for fast on-device AI. It delivers strong chat quality in a 1.2B parameter footprint, with efficient edge inference and broad runtime support.
Z.ai: GLM 4.7 Flash
As a 30B-class SOTA model, GLM-4.7-Flash offers a new option that balances performance and efficiency. It is further optimized for agentic coding use cases, strengthening coding capabilities, long-horizon task planning, and tool collaboration, and has achieved leading performance among open-source models of the same size on several current public benchmark leaderboards.
ByteDance Seed: Seed 1.6 Flash
Seed 1.6 Flash is an ultra-fast multimodal deep thinking model by ByteDance Seed, supporting both text and visual understanding. It features a 256k context window and can generate outputs of up to 16k tokens.
Mistral: Mistral Small Creative
Mistral Small Creative is an experimental small model designed for creative writing, narrative generation, roleplay and character-driven dialogue, general-purpose instruction following, and conversational agents.
Xiaomi: MiMo-V2-Flash
MiMo-V2-Flash is an open-source foundation language model developed by Xiaomi. It is a Mixture-of-Experts model with 309B total parameters and 15B active parameters, adopting hybrid attention architecture. MiMo-V2-Flash supports a hybrid-thinking toggle and a 256K context window, and excels at reasoning, coding, and agent scenarios. On SWE-bench Verified and SWE-bench Multilingual, MiMo-V2-Flash ranks as the top #1 open-source model globally, delivering performance comparable to Claude Sonnet 4.5 while costing only about 3.5% as much.
Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs.
NVIDIA: Nemotron 3 Nano 30B A3B
NVIDIA Nemotron 3 Nano 30B A3B is a small language MoE model with highest compute efficiency and accuracy for developers to build specialized agentic AI systems.
The model is fully open with open-weights, datasets and recipes so developers can easily customize, optimize, and deploy the model on their infrastructure for maximum privacy and security.
Note: For the free endpoint, all prompts and output are logged to improve the provider's model and its product and services. Please do not upload any personal, confidential, or otherwise sensitive information. This is a trial use only. Do not use for production or business-critical systems.
Body Builder (beta)
Transform your natural language requests into structured OpenRouter API request objects. Describe what you want to accomplish with AI models, and Body Builder will construct the appropriate API calls. Example: "count to 10 using gemini and opus."
This is useful for creating multi-model requests, custom model routers, or programmatic generation of API calls from human descriptions.
BETA NOTICE: Body Builder is in beta, and currently free. Pricing and functionality may change in the future.
Mistral: Ministral 3 3B 2512
The smallest model in the Ministral 3 family, Ministral 3 3B is a powerful, efficient tiny language model with vision capabilities.
Arcee AI: Trinity Mini
Trinity Mini is a 26B-parameter (3B active) sparse mixture-of-experts language model featuring 128 experts with 8 active per token. Engineered for efficient reasoning over long contexts (131k) with robust function calling and multi-step agent workflows.
AllenAI: Olmo 3 7B Instruct
Olmo 3 7B Instruct is a supervised instruction-fine-tuned variant of the Olmo 3 7B base model, optimized for instruction-following, question-answering, and natural conversational dialogue. By leveraging high-quality instruction data and an open training pipeline, it delivers strong performance across everyday NLP tasks while remaining accessible and easy to integrate. Developed by Ai2 under the Apache 2.0 license, the model offers a transparent, community-friendly option for instruction-driven applications.
Mistral: Voxtral Small 24B 2507
Voxtral Small is an enhancement of Mistral Small 3, incorporating state-of-the-art audio input capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and audio understanding. Input audio is priced at $100 per million seconds.
OpenAI: gpt-oss-safeguard-20b
gpt-oss-safeguard-20b is a safety reasoning model from OpenAI built upon gpt-oss-20b. This open-weight, 21B-parameter Mixture-of-Experts (MoE) model offers lower latency for safety tasks like content classification, LLM filtering, and trust & safety labeling.
Learn more about this model in OpenAI's gpt-oss-safeguard user guide.
NVIDIA: Nemotron Nano 12B 2 VL
NVIDIA Nemotron Nano 2 VL is a 12-billion-parameter open multimodal reasoning model designed for video understanding and document intelligence. It introduces a hybrid Transformer-Mamba architecture, combining transformer-level accuracy with Mamba’s memory-efficient sequence modeling for significantly higher throughput and lower latency.
The model supports inputs of text and multi-image documents, producing natural-language outputs. It is trained on high-quality NVIDIA-curated synthetic datasets optimized for optical-character recognition, chart reasoning, and multimodal comprehension.
Nemotron Nano 2 VL achieves leading results on OCRBench v2 and scores ≈ 74 average across MMMU, MathVista, AI2D, OCRBench, OCR-Reasoning, ChartQA, DocVQA, and Video-MME—surpassing prior open VL baselines. With Efficient Video Sampling (EVS), it handles long-form videos while reducing inference cost.
Open-weights, training data, and fine-tuning recipes are released under a permissive NVIDIA open license, with deployment supported across NeMo, NIM, and major inference runtimes.
LiquidAI: LFM2-8B-A1B
LFM2-8B-A1B is an efficient on-device Mixture-of-Experts (MoE) model from Liquid AI’s LFM2 family, built for fast, high-quality inference on edge hardware. It uses 8.3B total parameters with only ~1.5B active per token, delivering strong performance while keeping compute and memory usage low—making it ideal for phones, tablets, and laptops.
LiquidAI: LFM2-2.6B
LFM2 is a new generation of hybrid models developed by Liquid AI, specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency.
IBM: Granite 4.0 Micro
Granite-4.0-H-Micro is a 3B parameter from the Granite 4 family of models. These models are the latest in a series of models released by IBM. They are fine-tuned for long context tool calling.
Qwen: Qwen3 VL 8B Instruct
Qwen3-VL-8B-Instruct is a multimodal vision-language model from the Qwen3-VL series, built for high-fidelity understanding and reasoning across text, images, and video. It features improved multimodal fusion with Interleaved-MRoPE for long-horizon temporal reasoning, DeepStack for fine-grained visual-text alignment, and text-timestamp alignment for precise event localization.
The model supports a native 256K-token context window, extensible to 1M tokens, and handles both static and dynamic media inputs for tasks like document parsing, visual question answering, spatial reasoning, and GUI control. It achieves text understanding comparable to leading LLMs while expanding OCR coverage to 32 languages and enhancing robustness under varied visual conditions.
NVIDIA: Llama 3.3 Nemotron Super 49B V1.5
Llama-3.3-Nemotron-Super-49B-v1.5 is a 49B-parameter, English-centric reasoning/chat model derived from Meta’s Llama-3.3-70B-Instruct with a 128K context. It’s post-trained for agentic workflows (RAG, tool calling) via SFT across math, code, science, and multi-turn chat, followed by multiple RL stages; Reward-aware Preference Optimization (RPO) for alignment, RL with Verifiable Rewards (RLVR) for step-wise reasoning, and iterative DPO to refine tool-use behavior. A distillation-driven Neural Architecture Search (“Puzzle”) replaces some attention blocks and varies FFN widths to shrink memory footprint and improve throughput, enabling single-GPU (H100/H200) deployment while preserving instruction following and CoT quality.
In internal evaluations (NeMo-Skills, up to 16 runs, temp = 0.6, top_p = 0.95), the model reports strong reasoning/coding results, e.g., MATH500 pass@1 = 97.4, AIME-2024 = 87.5, AIME-2025 = 82.71, GPQA = 71.97, LiveCodeBench (24.10–25.02) = 73.58, and MMLU-Pro (CoT) = 79.53. The model targets practical inference efficiency (high tokens/s, reduced VRAM) with Transformers/vLLM support and explicit “reasoning on/off” modes (chat-first defaults, greedy recommended when disabled). Suitable for building agents, assistants, and long-context retrieval systems where balanced accuracy-to-cost and reliable tool use matter.
Baidu: ERNIE 4.5 21B A3B Thinking
ERNIE-4.5-21B-A3B-Thinking is Baidu's upgraded lightweight MoE model, refined to boost reasoning depth and quality for top-tier performance in logical puzzles, math, science, coding, text generation, and expert-level academic benchmarks.
Qwen: Qwen3 VL 30B A3B Thinking
Qwen3-VL-30B-A3B-Thinking is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Thinking variant enhances reasoning in STEM, math, and complex tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.
Google: Gemini 2.5 Flash Lite Preview 09-2025
Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, "thinking" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the Reasoning API parameter to selectively trade off cost for intelligence.
Qwen: Qwen3 VL 235B A22B Thinking
Qwen3-VL-235B-A22B Thinking is a multimodal model that unifies strong text generation with visual understanding across images and video. The Thinking model is optimized for multimodal reasoning in STEM and math. The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning.
Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows, turning sketches or mockups into code and assisting with UI debugging, while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.
Tongyi DeepResearch 30B A3B
Tongyi DeepResearch is an agentic large language model developed by Tongyi Lab, with 30 billion total parameters activating only 3 billion per token. It's optimized for long-horizon, deep information-seeking tasks and delivers state-of-the-art performance on benchmarks like Humanity's Last Exam, BrowserComp, BrowserComp-ZH, WebWalkerQA, GAIA, xbench-DeepSearch, and FRAMES. This makes it superior for complex agentic search, reasoning, and multi-step problem-solving compared to prior models.
The model includes a fully automated synthetic data pipeline for scalable pre-training, fine-tuning, and reinforcement learning. It uses large-scale continual pre-training on diverse agentic data to boost reasoning and stay fresh. It also features end-to-end on-policy RL with a customized Group Relative Policy Optimization, including token-level gradients and negative sample filtering for stable training. The model supports ReAct for core ability checks and an IterResearch-based 'Heavy' mode for max performance through test-time scaling. It's ideal for advanced research agents, tool use, and heavy inference workflows.
Qwen: Qwen3 Next 80B A3B Instruct
Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought.
The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.
NVIDIA: Nemotron Nano 9B V2
NVIDIA-Nemotron-Nano-9B-v2 is a large language model (LLM) trained from scratch by NVIDIA, and designed as a unified model for both reasoning and non-reasoning tasks. It responds to user queries and tasks by first generating a reasoning trace and then concluding with a final response.
The model's reasoning capabilities can be controlled via a system prompt. If the user prefers the model to provide its final answer without intermediate reasoning traces, it can be configured to do so.
Qwen: Qwen3 30B A3B Thinking 2507
Qwen3-30B-A3B-Thinking-2507 is a 30B parameter Mixture-of-Experts reasoning model optimized for complex tasks requiring extended multi-step thinking. The model is designed specifically for “thinking mode,” where internal reasoning traces are separated from final answers.
Compared to earlier Qwen3-30B releases, this version improves performance across logical reasoning, mathematics, science, coding, and multilingual benchmarks. It also demonstrates stronger instruction following, tool use, and alignment with human preferences. With higher reasoning efficiency and extended output budgets, it is best suited for advanced research, competitive problem solving, and agentic applications requiring structured long-context reasoning.
Baidu: ERNIE 4.5 21B A3B
A sophisticated text-based Mixture-of-Experts (MoE) model featuring 21B total parameters with 3B activated per token, delivering exceptional multimodal understanding and generation through heterogeneous MoE structures and modality-isolated routing. Supporting an extensive 131K token context length, the model achieves efficient inference via multi-expert parallel collaboration and quantization, while advanced post-training techniques including SFT, DPO, and UPO ensure optimized performance across diverse applications with specialized routing and balancing losses for superior task handling.
OpenAI: GPT-5 Nano
GPT-5-Nano is the smallest and fastest variant in the GPT-5 system, optimized for developer tools, rapid interactions, and ultra-low latency environments. While limited in reasoning depth compared to its larger counterparts, it retains key instruction-following and safety features. It is the successor to GPT-4.1-nano and offers a lightweight option for cost-sensitive or real-time applications.
OpenAI: gpt-oss-120b
gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.
OpenAI: gpt-oss-120b (exacto)
gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.
OpenAI: gpt-oss-20b
gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.
Qwen: Qwen3 30B A3B Instruct 2507
Qwen3-30B-A3B-Instruct-2507 is a 30.5B-parameter mixture-of-experts language model from Qwen, with 3.3B active parameters per inference. It operates in non-thinking mode and is designed for high-quality instruction following, multilingual understanding, and agentic tool use. Post-trained on instruction data, it demonstrates competitive performance across reasoning (AIME, ZebraLogic), coding (MultiPL-E, LiveCodeBench), and alignment (IFEval, WritingBench) benchmarks. It outperforms its non-instruct variant on subjective and open-ended tasks while retaining strong factual and coding performance.
Z.ai: GLM 4.5 Air
GLM-4.5-Air is the lightweight variant of our latest flagship model family, also purpose-built for agent-centric applications. Like GLM-4.5, it adopts the Mixture-of-Experts (MoE) architecture but with a more compact parameter size. GLM-4.5-Air also supports hybrid inference modes, offering a "thinking mode" for advanced reasoning and tool use, and a "non-thinking mode" for real-time interaction. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs
Qwen: Qwen3 235B A22B Thinking 2507
Qwen3-235B-A22B-Thinking-2507 is a high-performance, open-weight Mixture-of-Experts (MoE) language model optimized for complex reasoning tasks. It activates 22B of its 235B parameters per forward pass and natively supports up to 262,144 tokens of context. This "thinking-only" variant enhances structured logical reasoning, mathematics, science, and long-form generation, showing strong benchmark performance across AIME, SuperGPQA, LiveCodeBench, and MMLU-Redux. It enforces a special reasoning mode (</think>) and is designed for high-token outputs (up to 81,920 tokens) in challenging domains.
The model is instruction-tuned and excels at step-by-step reasoning, tool use, agentic workflows, and multilingual tasks. This release represents the most capable open-source variant in the Qwen3-235B series, surpassing many closed models in structured reasoning use cases.
Z.ai: GLM 4 32B
GLM 4 32B is a cost-effective foundation language model.
It can efficiently perform complex tasks and has significantly enhanced capabilities in tool use, online search, and code-related intelligent tasks.
It is made by the same lab behind the thudm models.
Qwen: Qwen3 Coder 480B A35B
Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts).
Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.
ByteDance: UI-TARS 7B
UI-TARS-1.5 is a multimodal vision-language agent optimized for GUI-based environments, including desktop interfaces, web browsers, mobile systems, and games. Built by ByteDance, it builds upon the UI-TARS framework with reinforcement learning-based reasoning, enabling robust action planning and execution across virtual interfaces.
This model achieves state-of-the-art results on a range of interactive and grounding benchmarks, including OSworld, WebVoyager, AndroidWorld, and ScreenSpot. It also demonstrates perfect task completion across diverse Poki games and outperforms prior models in Minecraft agent tasks. UI-TARS-1.5 supports thought decomposition during inference and shows strong scaling across variants, with the 1.5 version notably exceeding the performance of earlier 72B and 7B checkpoints.
Google: Gemini 2.5 Flash Lite
Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, "thinking" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the Reasoning API parameter to selectively trade off cost for intelligence.
Qwen: Qwen3 235B A22B Instruct 2507
Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks).
Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.
Mistral: Devstral Small 1.1
Devstral Small 1.1 is a 24B parameter open-weight language model for software engineering agents, developed by Mistral AI in collaboration with All Hands AI. Finetuned from Mistral Small 3.1 and released under the Apache 2.0 license, it features a 128k token context window and supports both Mistral-style function calling and XML output formats.
Designed for agentic coding workflows, Devstral Small 1.1 is optimized for tasks such as codebase exploration, multi-file edits, and integration into autonomous development agents like OpenHands and Cline. It achieves 53.6% on SWE-Bench Verified, surpassing all other open models on this benchmark, while remaining lightweight enough to run on a single 4090 GPU or Apple silicon machine. The model uses a Tekken tokenizer with a 131k vocabulary and is deployable via vLLM, Transformers, Ollama, LM Studio, and other OpenAI-compatible runtimes.
Venice: Uncensored
Venice Uncensored Dolphin Mistral 24B Venice Edition is a fine-tuned variant of Mistral-Small-24B-Instruct-2501, developed by dphn.ai in collaboration with Venice.ai. This model is designed as an “uncensored” instruct-tuned LLM, preserving user control over alignment, system prompts, and behavior. Intended for advanced and unrestricted use cases, Venice Uncensored emphasizes steerability and transparent behavior, removing default safety and alignment layers typically found in mainstream assistant models.
Google: Gemma 3n 2B
Gemma 3n E2B IT is a multimodal, instruction-tuned model developed by Google DeepMind, designed to operate efficiently at an effective parameter size of 2B while leveraging a 6B architecture. Based on the MatFormer architecture, it supports nested submodels and modular composition via the Mix-and-Match framework. Gemma 3n models are optimized for low-resource deployment, offering 32K context length and strong multilingual and reasoning performance across common benchmarks. This variant is trained on a diverse corpus including code, math, web, and multimodal data.
Mistral: Mistral Small 3.2 24B
Mistral-Small-3.2-24B-Instruct-2506 is an updated 24B parameter model from Mistral optimized for instruction following, repetition reduction, and improved function calling. Compared to the 3.1 release, version 3.2 significantly improves accuracy on WildBench and Arena Hard, reduces infinite generations, and delivers gains in tool use and structured output tasks.
It supports image and text inputs with structured outputs, function/tool calling, and strong performance across coding (HumanEval+, MBPP), STEM (MMLU, MATH, GPQA), and vision benchmarks (ChartQA, DocVQA).
DeepSeek: R1 0528
May 28th update to the original DeepSeek R1 Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass.
Fully open-source model.
Google: Gemma 3n 4B
Gemma 3n E4B-it is optimized for efficient execution on mobile and low-resource devices, such as phones, laptops, and tablets. It supports multimodal inputs—including text, visual data, and audio—enabling diverse tasks such as text generation, speech recognition, translation, and image analysis. Leveraging innovations like Per-Layer Embedding (PLE) caching and the MatFormer architecture, Gemma 3n dynamically manages memory usage and computational load by selectively activating model parameters, significantly reducing runtime resource requirements.
This model supports a wide linguistic range (trained in over 140 languages) and features a flexible 32K token context window. Gemma 3n can selectively load parameters, optimizing memory and computational efficiency based on the task or device capabilities, making it well-suited for privacy-focused, offline-capable applications and on-device AI solutions. Read more in the blog post
Qwen: Qwen3 4B
Qwen3-4B is a 4 billion parameter dense language model from the Qwen3 series, designed to support both general-purpose and reasoning-intensive tasks. It introduces a dual-mode architecture—thinking and non-thinking—allowing dynamic switching between high-precision logical reasoning and efficient dialogue generation. This makes it well-suited for multi-turn chat, instruction following, and complex agent workflows.
Qwen: Qwen3 30B A3B
Qwen3, the latest generation in the Qwen large language model series, features both dense and mixture-of-experts (MoE) architectures to excel in reasoning, multilingual support, and advanced agent tasks. Its unique ability to switch seamlessly between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile, high-quality performance.
Significantly outperforming prior models like QwQ and Qwen2.5, Qwen3 delivers superior mathematics, coding, commonsense reasoning, creative writing, and interactive dialogue capabilities. The Qwen3-30B-A3B variant includes 30.5 billion parameters (3.3 billion activated), 48 layers, 128 experts (8 activated per task), and supports up to 131K token contexts with YaRN, setting a new standard among open-source models.
Qwen: Qwen3 8B
Qwen3-8B is a dense 8.2B parameter causal language model from the Qwen3 series, designed for both reasoning-heavy tasks and efficient dialogue. It supports seamless switching between "thinking" mode for math, coding, and logical inference, and "non-thinking" mode for general conversation. The model is fine-tuned for instruction-following, agent integration, creative writing, and multilingual use across 100+ languages and dialects. It natively supports a 32K token context window and can extend to 131K tokens with YaRN scaling.
Qwen: Qwen3 14B
Qwen3-14B is a dense 14.8B parameter causal language model from the Qwen3 series, designed for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, programming, and logical inference, and a "non-thinking" mode for general-purpose conversation. The model is fine-tuned for instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.
Qwen: Qwen2.5 Coder 7B Instruct
Qwen2.5-Coder-7B-Instruct is a 7B parameter instruction-tuned language model optimized for code-related tasks such as code generation, reasoning, and bug fixing. Based on the Qwen2.5 architecture, it incorporates enhancements like RoPE, SwiGLU, RMSNorm, and GQA attention with support for up to 128K tokens using YaRN-based extrapolation. It is trained on a large corpus of source code, synthetic data, and text-code grounding, providing robust performance across programming languages and agentic coding workflows.
This model is part of the Qwen2.5-Coder family and offers strong compatibility with tools like vLLM for efficient deployment. Released under the Apache 2.0 license.
OpenAI: GPT-4.1 Nano
For tasks that demand low latency, GPT‑4.1 nano is the fastest and cheapest model in the GPT-4.1 series. It delivers exceptional performance at a small size with its 1 million token context window, and scores 80.1% on MMLU, 50.3% on GPQA, and 9.8% on Aider polyglot coding – even higher than GPT‑4o mini. It’s ideal for tasks like classification or autocompletion.
Meta: Llama 4 Scout
Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens.
Built for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.
Mistral: Mistral Small 3.1 24B
Mistral Small 3.1 24B Instruct is an upgraded variant of Mistral Small 3 (2501), featuring 24 billion parameters with advanced multimodal capabilities. It provides state-of-the-art performance in text-based reasoning and vision tasks, including image analysis, programming, mathematical reasoning, and multilingual support across dozens of languages. Equipped with an extensive 128k token context window and optimized for efficient local inference, it supports use cases such as conversational agents, function calling, long-document comprehension, and privacy-sensitive deployments. The updated version is Mistral Small 3.2
AllenAI: Olmo 2 32B Instruct
OLMo-2 32B Instruct is a supervised instruction-finetuned variant of the OLMo-2 32B March 2025 base model. It excels in complex reasoning and instruction-following tasks across diverse benchmarks such as GSM8K, MATH, IFEval, and general NLP evaluation. Developed by AI2, OLMo-2 32B is part of an open, research-oriented initiative, trained primarily on English-language datasets to advance the understanding and development of open-source language models.
Google: Gemma 3 4B
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling.
Google: Gemma 3 12B
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 12B is the second largest in the family of Gemma 3 models after Gemma 3 27B
Google: Gemma 3 27B
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 27B is Google's latest open source model, successor to Gemma 2
Google: Gemini 2.0 Flash Lite
Gemini 2.0 Flash Lite offers a significantly faster time to first token (TTFT) compared to Gemini Flash 1.5, while maintaining quality on par with larger models like Gemini Pro 1.5, all at extremely economical token prices.
Llama Guard 3 8B
Llama Guard 3 is a Llama-3.1-8B pretrained model, fine-tuned for content safety classification. Similar to previous versions, it can be used to classify content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.
Llama Guard 3 was aligned to safeguard against the MLCommons standardized hazards taxonomy and designed to support Llama 3.1 capabilities. Specifically, it provides content moderation in 8 languages, and was optimized to support safety and security for search and code interpreter tool calls.
Google: Gemini 2.0 Flash
Gemini Flash 2.0 offers a significantly faster time to first token (TTFT) compared to Gemini Flash 1.5, while maintaining quality on par with larger models like Gemini Pro 1.5. It introduces notable enhancements in multimodal understanding, coding capabilities, complex instruction following, and function calling. These advancements come together to deliver more seamless and robust agentic experiences.
Qwen: Qwen-Turbo
Qwen-Turbo, based on Qwen2.5, is a 1M context model that provides fast speed and low cost, suitable for simple tasks.
Mistral: Mistral Small 3
Mistral Small 3 is a 24B-parameter language model optimized for low-latency performance across common AI tasks. Released under the Apache 2.0 license, it features both pre-trained and instruction-tuned versions designed for efficient local deployment.
The model achieves 81% accuracy on the MMLU benchmark and performs competitively with larger models like Llama 3.3 70B and Qwen 32B, while operating at three times the speed on equivalent hardware. Read the blog post about the model here.
Microsoft: Phi 4
Microsoft Research Phi-4 is designed to perform well in complex reasoning tasks and can operate efficiently in situations with limited memory or where quick responses are needed.
At 14 billion parameters, it was trained on a mix of high-quality synthetic datasets, data from curated websites, and academic materials. It has undergone careful improvement to follow instructions accurately and maintain strong safety standards. It works best with English language inputs.
For more information, please see Phi-4 Technical Report
Cohere: Command R7B (12-2024)
Command R7B (12-2024) is a small, fast update of the Command R+ model, delivered in December 2024. It excels at RAG, tool use, agents, and similar tasks requiring complex reasoning and multiple steps.
Use of this model is subject to Cohere's Usage Policy and SaaS Agreement.
Meta: Llama 3.3 70B Instruct
The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks.
Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
Model Card
Amazon: Nova Lite 1.0
Amazon Nova Lite 1.0 is a very low-cost multimodal model from Amazon that focused on fast processing of image, video, and text inputs to generate text output. Amazon Nova Lite can handle real-time customer interactions, document analysis, and visual question-answering tasks with high accuracy.
With an input context of 300K tokens, it can analyze multiple images or up to 30 minutes of video in a single input.
Amazon: Nova Micro 1.0
Amazon Nova Micro 1.0 is a text-only model that delivers the lowest latency responses in the Amazon Nova family of models at a very low cost. With a context length of 128K tokens and optimized for speed and cost, Amazon Nova Micro excels at tasks such as text summarization, translation, content classification, interactive chat, and brainstorming. It has simple mathematical reasoning and coding abilities.
Qwen: Qwen2.5 7B Instruct
Qwen2.5 7B is the latest series of Qwen large language models. Qwen2.5 brings the following improvements upon Qwen2:
Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains.
Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.
Long-context Support up to 128K tokens and can generate up to 8K tokens.
Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.
Meta: Llama 3.2 3B Instruct
Llama 3.2 3B is a 3-billion-parameter multilingual large language model, optimized for advanced natural language processing tasks like dialogue generation, reasoning, and summarization. Designed with the latest transformer architecture, it supports eight languages, including English, Spanish, and Hindi, and is adaptable for additional languages.
Trained on 9 trillion tokens, the Llama 3.2 3B model excels in instruction-following, complex reasoning, and tool use. Its balanced performance makes it ideal for applications needing accuracy and efficiency in text generation across multilingual settings.
Click here for the original model card.
Usage of this model is subject to Meta's Acceptable Use Policy.
Meta: Llama 3.2 1B Instruct
Llama 3.2 1B is a 1-billion-parameter language model focused on efficiently performing natural language tasks, such as summarization, dialogue, and multilingual text analysis. Its smaller size allows it to operate efficiently in low-resource environments while maintaining strong task performance.
Supporting eight core languages and fine-tunable for more, Llama 1.3B is ideal for businesses or developers seeking lightweight yet powerful AI solutions that can operate in diverse multilingual settings without the high computational demand of larger models.
Click here for the original model card.
Usage of this model is subject to Meta's Acceptable Use Policy.
Meta: Llama 3.2 11B Vision Instruct
Llama 3.2 11B Vision is a multimodal model with 11 billion parameters, designed to handle tasks combining visual and textual data. It excels in tasks such as image captioning and visual question answering, bridging the gap between language generation and visual reasoning. Pre-trained on a massive dataset of image-text pairs, it performs well in complex, high-accuracy image analysis.
Its ability to integrate visual understanding with language processing makes it an ideal solution for industries requiring comprehensive visual-linguistic AI applications, such as content creation, AI-driven customer service, and research.
Click here for the original model card.
Usage of this model is subject to Meta's Acceptable Use Policy.
NeverSleep: Lumimaid v0.2 8B
Lumimaid v0.2 8B is a finetune of Llama 3.1 8B with a "HUGE step up dataset wise" compared to Lumimaid v0.1. Sloppy chats output were purged.
Usage of this model is subject to Meta's Acceptable Use Policy.
Nous: Hermes 3 405B Instruct
Hermes 3 is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.
Hermes 3 405B is a frontier-level, full-parameter finetune of the Llama-3.1 405B foundation model, focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.
The Hermes 3 series builds and expands on the Hermes 2 set of capabilities, including more powerful and reliable function calling and structured output capabilities, generalist assistant capabilities, and improved code generation skills.
Hermes 3 is competitive, if not superior, to Llama-3.1 Instruct models at general capabilities, with varying strengths and weaknesses attributable between the two.
Sao10K: Llama 3 8B Lunaris
Lunaris 8B is a versatile generalist and roleplaying model based on Llama 3. It's a strategic merge of multiple models, designed to balance creativity with improved logic and general knowledge.
Created by Sao10k, this model aims to offer an improved experience over Stheno v3.2, with enhanced creativity and logical reasoning.
For best results, use with Llama 3 Instruct context template, temperature 1.4, and min_p 0.1.
Meta: Llama 3.1 8B Instruct
Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 8B instruct-tuned version is fast and efficient.
It has demonstrated strong performance compared to leading closed-source models in human evaluations.
To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.
Mistral: Mistral Nemo
A 12B parameter model with a 128k token context length built by Mistral in collaboration with NVIDIA.
The model is multilingual, supporting English, French, German, Spanish, Italian, Portuguese, Chinese, Japanese, Korean, Arabic, and Hindi.
It supports function calling and is released under the Apache 2.0 license.
Google: Gemma 2 9B
Gemma 2 9B by Google is an advanced, open-source language model that sets a new standard for efficiency and performance in its size class.
Designed for a wide variety of tasks, it empowers developers and researchers to build innovative applications, while maintaining accessibility, safety, and cost-effectiveness.
See the launch announcement for more details. Usage of Gemma is subject to Google's Gemma Terms of Use.
Meta: Llama 3 8B Instruct
Meta's latest class of model (Llama 3) launched with a variety of sizes & flavors. This 8B instruct-tuned version was optimized for high quality dialogue usecases.
It has demonstrated strong performance compared to leading closed-source models in human evaluations.
To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.
Auto Router
Your prompt will be processed by a meta-model and routed to one of dozens of models (see below), optimizing for the best possible output.
To see which model was used, visit Activity, or read the model attribute of the response. Your response will be priced at the same rate as the routed model.
Learn more, including how to customize the models for routing, in our docs.
Requests will be routed to the following models:
MythoMax 13B
One of the highest performing and most popular fine-tunes of Llama 2 13B, with rich descriptions and roleplay. #merge
Download for your platform, browse release history, or explore our development journey
Apple Silicon & Intel
x64 Architecture
Debian Package
Loading releases...
Latest release downloads
Browse all releases
Development timeline
Download Pluely now and experience the privacy-first AI assistant that works seamlessly in the background.